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FOREWORD

This paper presents an application of a generalized inverse
to a particular mathematical programming problem, the mcdular
design problem. It is designed to iliustrate the simplification that
can oftenresult by transforming a given problem into a more con-
venient form. In particular the use of a generalized inverse in
making such a transformation is emphasized.

The results of this paper are closely related to the work of
A.V. Fiacco and G. P. McCormick of RAC on nonlinear program-
ming. In addition the method of separable convex programming
under linear equality constraints deve! .'ed by J. E. Falk of RAC
is used in the solution of the transformed problem.
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ABSTRACT

It is shown that the modular design problem
minimize

L J n

Ly X oy

1 =1 [ |
subject to

Y. 4,00 - oo my -l n.

can be transformed into a problem of minimizing a separable convex func-
tion subject to linear equality constraints and nonnegativities. This trans-
formation is effected by using a generalized inverse of the constraint
matrix. Moreover the nature of the functional and the constraints of the
separable problem are such that a good starting point for its solution can
be obtained by solving a particular traniportation problem. Several pos-
sible methods for solving the separable problem are discussed, and the
results of our computational experience with these methods are given. It
is also shown that the modular design problem can be viewed as a special
case of a large cliass of general engineering design problems that have
been discussed in the literature.



INTRODUCTION

The problem to be considered is the following:

minimize
(X ¢, E) (X 4D)
t=1 !
subject to ;
E, D, > R” S PR m
= TS n (0)
E.D 20

In Eq 0 it is assumed that ¢, , d;, R,; are constants such that ¢, > 0, 4, > 0,
R.20,forall i,and | and E,, D; are the variables.t Using the transforma-

tions y, = ¢, E, i=1,...,m 2 %4 D;,j=1,...,nand r,lie,d,R.,
i=1,...,m j=1,...,n the problem can be written in the form:
minimize x S
Iy %3
R | i1
subject to
Vi 2ty fobioesy m
ot v " (v
Y., R &%

where r,, are constants such that r;; = 0 for all i and j. In Eq 1 it can be as-
sumed that v, z; are strictly positive without ioss of generality since for one
of these to be zero it is necessary for a row or column of the (r;;) matrix to be
zero, and if this were so that row or column and its corresponding variable
could be dropped from the problem.

Equation 0, or equivalently Eq 1, may be called the mcdular design problem.
This problem was first suggested by Evans.' In his paper Evans presented an
algorithm for solving the problem that “converges rather slowly” to the optimal
solution. He also comments that the algorithm “can be made to converge much
faster if one makes intelligent guesses in the trial : 1. ‘on phase; however
there is apparently no way to program this last.”’

This paper shows that the coustraints y,, z; > 0, where strict inequality
exists, permit Eq 1 to be transformed into a proLlem of minimizing a convex
function subject to linear inequ.lities. Then a generalized inverse is used to
effect a second transformation, which yields a problem in the form of minimiz-
ing a separable convex function subject to linear equality constraints in non-
negative variables.

The achievement of a proble:n involving a separable convex functional
means that direct contact is established with the computing routines of linear

tFor an illustration of a situation where such a problem arises the reader is re-
ferred to Ref 1.




progranmiming by recourse to suitable piecewise linear approximations. A dis-
cussion of such a technique is given in Chap. X of Charnes and Cooper’s Man-
agement Models and Industrial Applications of Linear Programming® and in
various references cited therein.

Moreover the nature of the functional and the constraints of the separable
problem are such that a good starting point for its solution can be obtained by
solving a particular distribution problem. Since tnere are extremely etticient
algorithms for solving such problems an initial solution can be quickly obtained,
thus eliminating one of the major difficulties discussed by Evans.'

Finally it is shown that Eq 0 is a member of a large class of engineering
design protlems that have been considered in several research papers pro-
duced at Northwestern University and Westinghouse Research Laboratories.®~

MATRIX THEORY

Definition. Let A be any m .n matrix.

Then any n.m matrix A" such that AA*A - A will be called a generalized
inverse of A\.

A generalized inverse is unique if and only if A is square and nonsingular.
It can also be shown that A* is a generalized inverse of A if and only if \ - A%b
is a sHlution of AN - b, whenever A\ - b is consistent. Further properties uf A"
can be found in papers by Rao and by Charnes and Kirby."®

Lemma 1. A necessary and sufticient condition that the matrix equation
AX = b be consistent is that AA#b - b

Proof. Suppose that AA*b.b. Then \ - A*b is a solution of A\ - b, implying
the consistency of AX = b.

Conversely suppose that A\ « b is consistent. Then

[ N Y L TR T S S W S N

Lemma 2. Let ¥ = { X |AX> ¢}.

Let 0= wl|lwz20, AA4(c*+w) = ¢ +w].

Then \¢y = there exists an w such that AN - ¢+ w and we Q.

Proof. Let \e V.

Let w = A\ -¢, so that, ior any \, wis uniquely defined.

Then w - 0as VeV = AX - ¢. Also by this definition of w AX = ¢ + w. But
by lemma 1, A\ = ¢+w T AA* (¢ * w) = ¢+ w. So that for any \e ¥ the w
defined by w - A\ - ¢ satisfies w ¢ Q and AN - ¢ + w.

Conversely for any wefd, AA* (¢ + w) = ¢+ w, which by lemma 1 implies
there exists \ such that AN\ = ¢ + @ is consistent., Also weis Tw - 0, hence
AX = ¢+ w= A\ - . Thus (or any we 3, there exists an \ (which is not
necessarily unique) such that AN ¢+ w and Xe V.

Therefore if A\ - ¢ are the constraints of some mathematical program-
ming problem, this problem can be transformed into an equivalent one whose

constraints are \\ = ¢+ w, AAY (¢ +w) = ¢+ w,and w > 0, providing the
following pair of equivalent programming problems,
optimize

A



subject to
AN > ¢

and optimize
f(x)

subject to
AN Crw

'\\'(('u) (@
w20,

The added constraints AA* (¢ + w) = ¢+ w, w > 0 in this second problem
ensure that only vectors w of “slack variables” for which the system AN\ =
¢ + w is consistent will be considered.

The reason why such consistency conditions are not mentioned in most
linear programming texts is that A is assumed to be an m xn matrix of rank
m . Since it can be shown that AA* = I, the m x m identity matrix, if and only if
A has full row rank,t it can be seen that when A has rank m the constraints AA¥
(c+ w) = ¢+ w become ¢+ w = ¢+ w; thus they are redundant and can be
igniored.

MODULAR DESIGN PROBLEM

In the constraints of Eq 1,y, >0, 2, >0 i=1,...,m,j=1,...,n.
Since these are strict inequalities the fohowlng change of variables can be
made:

"
Lety,z¢ ' =l ..., m

‘
Let 2 "L A 1 ISR n

where u;, v, are unrestricted variables. Then Eq 1 becomes
minimize

S A
i1=1 1=1
subject to
e c"_-v,, i=l, m
i=1. n
This is equivalent to
minimize
S X &Y
i=1j=1
subject to
s 2, 4 Bonay m (2)

where c;; = In(r;)i=1,...,mj=1,...,n.
Since it is possible that some r;; =0, the value of - = is an admissible
value for ¢;;. Whenever ¢, = - «, the constraint u; +v; > ¢;; is redundant

tFor a proof see Ref 7, lemma 1.



corresponding to any constraint of Eq 1 of the form y;z; > 0 being redundant
as y;, z; >0. A procedure for avoiding the computational difficulties that arise
in dealing with the quantity - « will be given later.

The constraint set of Eq 2 can be written in matrix form as AX > ¢, where

s Cal

r
L L TR SR T T IRI MIEN - o

€

X'!(Il.....ul.....l..v‘.. v a¥Wias s vy

andthe mn x (m + n) matrix A = (a,5), r=1,... ,mn,s=1,..., m+n has the
following properties:

W) l.."'.‘lvol j=1. n
k-0, . -1

(i) l.'”_-”rol j=L....,n
0 ,m=1

and all remaining a,, are zero.t"
Let w be the mn x 1 vector defined by

r
U'(w“.--..w“,.--~.m,|.....u”....,m|......'m ...,m.").

Then using the results of the previous section Eq 2 can be replaced by the
following equivalent problem:

minimize
L L
5 8 O
=]l =1
subject to
AX ~c+w
A (cra) s crw (3)
w20,

From definitions of A, X, ¢, and w it can be seen that AX = ¢ + w can be
writtenas u; +v; = ¢j; +w;; foralli,j. Thusthe u;,i =1,...,m, v;, | =1,
.+« yn can be eliminated from Eq 3 and rewritten as
minimize WS

2 s '(”om.,
i=])=1
subject to

AA.(( te) = Crw

w > 0. (‘)

where the constraints of Eq 4 guarantee that u;, v; exist that satisfy u; + v; =
€y *wy andu; +v; 2 ¢y

In other words Eq 4 can be solved for w,, , the optimal values of w; , i =l:

.y,m, j=1,..., n and then the system of linear equatlons Wit = ¢ *w;

o SRR 3 |‘ =1,...,n can be solved to obtain u,. u, theopumaivaluel
u,,ial,...,nandv,,| ok, .. 0

Moreover, because A has a specific form one of its generalized inverses
can be characterized in the following manner: Let A¥ = (a" ) s=1,..., m+n,
r=1,...,m; then A¥ is such that

1hthuchancuﬂuuono( A it is assumed that m,n 22, If m=1, or n =1, or
both, the problem is trivial.



(l) ."|--l '*2 ..... m

(ii)l'.”.'-l Jo k. ..n

Gi) @ .1 mer =) k=1...,m-1

and all remaining @} , , s=1,..., m+n, r=1,..., mn will be zero. It can
be shown that A defined above does indeed have the property that AA¥A .« A.

Using this A and the study’s characterization of A, AA¥ can be computed
and finally (I - AA¥), where I is the mn xmn identity matrix. If T is defined =
(I-AA¥) then the mn xmn matrix T =(t, ), p=1,...,mn, g=1,... mn has
the following properties:

() typyry=? k=1 ..., m=L1=2...,n
) tyyyyy==1 k=l...,m=l1=2...,n
i) typyy, amey ==1 kel ..., m=lle2...,n
) st nst =1 k=1... , m=L1-2...,n

and all remaining ¢, ., p, 4, =1, . . . , mn will be zero.
Finally replacing the constraints AA¥ (c + w) = ¢+ w of Eq 4 by (I - AA¥)
w = = (I-AA¥)c and using the study’s characterization of T Eq 4 can be written

as
minimize

LJ ”n - n

BB s o8 B o™

=] j=1 i=] =1
subject to

L T Nl PSR A TN Al S TR WA TN Rl T T N
k=1 ..., m=L1=2...,n (5)
M"ZOI-I.. vl Imls s v s 5B

The first objective, which was to write Eq 0 in the form of minimizing a sep-
arable convex function subject to linear equality constraints in nonnegative
variables, has now been accomplished.

DUAL DISTRIBUTION APPROXIMATION

Prior to discussing various ways of solving Eq 5, how to obtain an initial
feasible solution quickly will be shown. Since in Eq 2 it is required that u; + vj
2 cj;, and at the same time it is desired to minimize I, I ., ¢“*"/ it is ex-
pected that the optimal solution will have u; +v; ~ ;. Thus the initial feasible
solution will be obtained by using the approximation

LIRa Y (3 MjtVvy=-¢
MY SN, MY =Cy

~eVQ sup ey -c.,).

In other words ¢“' * V1 = |s going to be approximated by the linear part of
its Taylor series expansion about zero. Thus a feasible solution to Eq 2 is
obtained by replacing £, £/, ¢“*" by



-~ n
2 % fMa ‘U e
i=] j=1

=€

LJ L m n n L
=2 % Oeede™e I w (X Me 3 0 (T
i=1 j=1 i=1 1=1 i=1 1=1

and then solving the problemn

minimize % -.
y a u + b b,v,
i=1 j=1
subject to
v 20, (6)
where
n L LJ n
a - X c"'.b'— 2 Y and 3 e b
1=1 1=1 i=1 i=1
n L
a " -3

1] 1
j=1 f=l

This is the dual of tie distribution problem
maximize

- Xy
=1 j=1

subject to

1"'30 T ISP T T (n

Since extremely efficient algorithms exist for solving distribution problems,
Eq 7, and hence Eq 6, can be solved quickly. If the optimal values of u; ,v; for
Eq 6 are denoted by u{, 1/, the relation w{, = ujj + v{ - ¢; can then be used
to define the initial values of w,; for Eq 5.

The starting point that is obtained by this procedure will, in general,
give values of wf, that are very close to the optimal values of w;; for some ij.
In addition if a solution exists of the system w;, +v; = ¢y i=1,...,m j=1,
«esymy(ie., if w =0 is feasible for Eq 5), this point will be optimal for both
Eqs 6 and 5; hence the initial feasible solution will be optimal.

In any case, because of the convexity of the objective function of Eq 5 in
w j, the iteration of this Taylor expansion procedure about w {; to get a new
dual distribution approximation, and so on, appears to be a possibly worthwhile
method in its own right for the solution of the modular design problem.

UNIQUENESS OF SOLUTIONS

As Evans'has pointed out, the solution of Eq 1 is not unique. If yj, z| is
a minimizing solution for Eq 1, then so is 6y, 276 for any 6 >0. This non-
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uniquerless can be seen again in Fq 2 since {f u',, v.', optimize Eq 2 then so
does u, - y, v, - y for any constant y.

This i8 not true however fcr problem 5, for the optimal solution of Eq 5
will be unique if the function 7  Z7_ , ¢ " ig a strictly convex function
ofw,,1=1,...,m y=1,...,n A necessary and sufficient condition
for this to be true is that all ¢,) >- =, j.e., thatr, ~-Oor (R, >0 forall i,).
Since we must have v,, z, -0, it follows that for any pair (1,)) for which r,, -0
the constraint v,z, - r,, will be redundant. Thus one way of assuring that the
functional of Eq 5 is strictly convex is to replace r,, -0Oby 7, = ¢ where ¢ >0
is very small. The solution of this perturbed problem will coincide with the
solution of Eq 5 if ¢ is very small in con.parison with the nonzero r,, .1

The advantage of strict convexity in the functional of Eq 5 is that it permits
the use of various nonlinear programming routines that require this strictly
convex property. Examples of such algorithms appear in papers by Falk, Fiacco
and McCormick, Rusen, and Charnes and Lemke."™"?

RELATION TO THE GENERAL ENGINEERING DESIGN PROBLEM

The transformation from Eq 1 to Eq 5 shows that the modular design prob-
lem is simply a special case of a large class of engineering design problems
that have been discussed elsewhere in the literature. Charnes and Cooper ™!
show that many problems in determining the optimal parameters for an engi-
neering design car be expressed mathematically as a problem of minimizing
a separable convex functional subject to linear constraints. This is exactly
the form in which Eq 5 is given.

Moreover Charnes and Cooper’ discuss various computational approaches
to such problems other than the methods mentioned above. In particular they
suggest that one means of solving such problems would be to get into the neigh-
borhood of the optimum as soon as possible and then undertake further refine-
ments after attaining this neighborhood. This approach would seem to be highly
feasible here because of the ease with which Eq 6 can be solved.

Equation 0 is also directly related to the work on engineering design prob-
lems done by Duffi.,, Peterson,and Zener.*® In their papers they consider
problems of the form

minimize
3 (’ll"ll '2"1" '-"lm
[
subject to
"x
> S T I S I T PP
lfﬂ. L
(8)
t, 0 ) =1 m
In Eq 8 it is assumed that ¢, >0all +, m) sny +1, mo=ny +1, ... etc. and a,

are any real constan(s.

tA sufficient condition for the solution of the perturbed problem to be optimal for
Eq 1 is that the constraint y, z, 27, = € not be binding, i.e., y;:} >7, =¢.



Equation 1 can be written in this form:

minimize

L n

'2| f‘ ?(l—l)ﬂ‘ll|'~‘l
subject to

?-““_”,”’l." l-”-'.sl (9)

4, >01,,,>0,
where
=y, i=1, L DL PPEE Y B PR IR SR TPL R |
and
?mnu-l)ln, Pyl coamo el

Duffin, Peterson,and Zener then write a dual to Eq 8 and proceed to show
that in many cases the solution of the dual is much easier to obtain than that of
the primal, Eq 8. Using their duality theory and a transformation of the dual
functional employed by Charnes and Cooper,’ which yields a concave functional,
the dual of Eq 9 is

maximize - ik
L 5 (In(@)=In(5)]+ b 3 5, In(T)
1«1 l-mnsd
subject to L
z 5-1
I=1
in (msgin
4 5 - 2 5 -0 =i oom
I=()=1)n+1l le(maj=l)ns
- LJ
b3 6‘._“__-”- b3 Amshel)nemei =0 (=msl,. .., msn
k-1 k-1
5,50 l=1,...,mn
5,20 lommsl,. .., 2m (10

Since the constraints of Eq 10 involve m +n + 1 equalities and there are
2 mn variables, there will be only one feasible point for Eq 10if 2mn =m +n +1,
This will be true only whenm =1, n =2 (or n=1, m=2), in which case the solu-
tion of Eq 0 is trivial anyway. Thus it would appear that although the dual to
Eq 8 is very useful for some engineering design problems it does not simplify
the solution of the modular design problem.

However, this method does have the useful property that any feasible point
for Eq 10 yields a value for its functional that is a lower bound on the functional
of Eq 0.° Siuce any feasible point for Eq 0 (in particular that point obtained by
solving Eq 6) yields an upper bound on the functional, it can be seen that one
might quickly get bounds on the optimal value of Eq 0 by solving Eq 6 and getting
any feasible solution to Eq 10.

EXAMPLE

As an example of the modular design problem consider the following,
which appeared in the Evans paper.’ The elements in Table 1 are the r;; values

10



for i =1,2,3,4; i=1,2, 3. Then the corresponding set of ¢, values is obtained
using the relation c¢;; = 1n(r;;). In accordance with the procedure suggested
above ry; =0 is nphced by " = ¢ =1. This problem is then solved and as
long as at the optimum u2 + v3 > 1, the optimal solution to the problem is
'23 = 0

The ¢;; i=1,...,4 =123, are shown in Table 2.

TABLE !
r
=15 fg=23 ra-4
a3 =0
rg, =13 39 = 13
(723 =1)
3 = 15 f32 * 17 33 = 35
T =3 Te2 = 12 Teg = 22
TABLE 2
€)1 = 2.70805 €9 = 3.13549 €13 = 3.78419
€y = 2.56495 Cpo = 2.56495 P 0.00000
€3 = 2.70805 €39 = 2.83321 €33 = 3.55535
€4 = 3.52636 €4 = 2.48491 Ca3 ™ 3.09104

Next the solution of Eq 6 is obtained. To do this the problem is set up in
tabular form as shown in Table 3. The optimal solution of Eq 6 is obtained in
one pass through the algorithm given in (Ref 2, pp 57-63).

TABLE 3

u: = 2.56495 v; = 2.56495 v§ = 3.21365

ey 2.70805_| 3.13549 |® |_3.78419 @— L
2.56495 | @ 2.56495 ﬁ 0.00000 | b

u$ = 0.00000
2.70805 | 2.83321 3.55535
u$ =0.34170 ay =67
[ 3.5%6% X o104 ||
ug = 0.96141 @) o, -68

b, =77 b, = 65 by = 102

In Table 3 the numbers in the upper left-hand corner of each box repre-
sent the ¢;;. The numbers in circles are the optimal values of x; inEqT;
where no circle appears it means that the corresponding optimal x;; is zero.
One set of optimal u;, v; tho&olm;uactustMtothuublo.
‘l‘hoeorrmmdw“ 'I‘ ‘V' = € are given in Table 4.

11



Finally, using the starting point given in Table 4 the problem is solved
using the method developed in Falk’s “An Algorithm for Separable Convex
Programming under Linear Equality Constraints.” The optimal w;;, u;, v;
and corresponding optimal values of y, z; , are shown in Table 5.

It can be seen from the table that w 53 >0 so that the constraint uy + i
> 9y is not binding; hence the above solution is optimal for the problem where

g - 0.

TABLE 4
@iy - 0.42744 @{a = 0.00000 @iy - 0.00000
o
w3y = 0.00000 w3q - 0.00000 wyy - 3.21365
@3, - 0.19860 wis - 0.07344 wgy = 0.00000
wyy - 0.00000 wyy = 1.04145 wyy = 1.06402
TABLE §
v} - 184635 vy~ 154578 vy~ 219048
. = . .
y wyy = 0.72801 wyg = 0.00000 wyy ~ 0.00000
u, = 1.58971
. . . . . . _e -
¥y 2, 3106 ¥y 2 = 23.00 v|.3r24.m
: wgy = 0.30057 wyg = 0.00000 wgy - 3.21365
uy = 1.01917
. - . . . . -
Ya 2, 17.56 Yp 2y = 13.00 Yo 23 - 24.87
» - . » .
" . wgy = 0.49917 wyg = 0.07344 wyy = 0.00000
uy 1 : 7, P e . . o .. 00
‘1 zl = 24.71 y-‘ ' 18.2 ys i3 " 35.
| wgy = 0.00000 wyy = 0.74038 wyy = 0.78345
ug - 1.68001
. . . s - . .
¥y 2 = 31.00 ¥g 22 = 25.17 Yy 23 = 18.16

Note that the initial starting point given in Table 5 actually gives seven
of the variables at their optimum values. Thus the solution of the dual distri-
bution approximation does indeed give a very good starting point for the solu-
tion of Eqs 2 or 5.1

As suggested in the section “Dual Distribution Approximation”® the dual
distribution approximauon was solved a second time by approximating u; + v,
- w,, Cij =W *uy - uf - u by the linear part of its Taylor series about
zero. The result was an lmproved starting polnt (i.e., it gave a lower value
of the objective function for Eq 5 than did w{, ) and six of the resulting wij
were at their optimum values.

{See Falk’s paper?® for further examples and some results of computational ex-
perience on problems similar to Eq 5.

12
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